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This article proposes an advanced searching method for setting the robust process parameters for injec-
tion molding based on the principal component analysis (PCA) and a regression model-based searching
method. This method could effectively reduce the influence of environmental noise on molded parts’
multi-quality characteristics in the injection molding process. Firstly, the PCA is utilized to construct a
composite quality indicator to represent the quality loss function of multi-quality characteristics. The
design of experiment and ANOVA methods are then used to choose the major parameters, which affect
parts quality and are called as adjustment factors. Secondly, a two-level statistically designed experiment
with the least squared error method was used to generate a regression model between part quality and
adjustment factors. Based on this mathematical model, the steepest decent method is used to search for
the optimal process parameters. To verify the performance, computer simulations and experiment of the
light-guided plate molding were investigated in this work. By comparing the robust qualities using Tagu-
chi method and our proposed method, it is found that our proposed method yields a better uniform pro-
duction quality.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Robust process parameter setting plays a crucial role in ensur-
ing the quality of molded parts prior to production. The traditional
process parameter setting for injection molding is based on statis-
tical and experiment, computer-aided simulations, or an operator’s
experience [1–7]. In the case that the setting result of producing
the injection parts is close to the specification limits of the part
quality, the production process will be easily affected by environ-
mental noise and thus the defect rate will increase. Therefore,
these parameters are inadequate and the production process is
not robust. In addressing such problems, methods like fuzzy theory
and artificial neural network have been proposed in recent years
[8–11], but they require a large amount of datum in advance. In
addition, with diverse materials and different designations of re-
quired products, such methods are difficultly applied in practical
use. Other approaches, for example, Taguchi method and response
surface method [12–15], targeting the parts quality by designing
effective experiments to find out the optimal process parameters,
have been developed [16–18]. Taguchi method is well known for
its design in effective experiments, but the optimal process param-
eters are confined to the designed ranges of factor levels in exper-
ll rights reserved.
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iments. The response surface method has no such limitation,
although the design of experiments is inherently more complex.

The above experimental design methods are often used in the
case of targeting one single quality characteristic to find the opti-
mal process parameters at a time. In reality, seeking the ideal pro-
cess parameters and focusing on multi-quality characteristics are
difficult but generally required. Reddy et al. [19] attempted to find
the ideal process parameters for three-quality characteristics
through the optimization method. However, the calculations in
these methods are rather complex and they are still not widely
used.

In studying multi-quality characteristics, i.e., a large number of
correlated quality characteristics, the information collected from
experiments may be confused and data analysis may be difficult.
The principal component analysis (PCA) allows data which contain
information of multi-quality characteristics to be converted into
several independent quality indicators. Part of these indicators is
then selected to construct a composite quality indicator, which
represents the mathematical function of the required multi-quality
characteristics. If the PCA can be further integrated with Taguchi
method, it becomes practical and efficient in solving problems of
multi-quality characteristics [20,21]. In this paper, we adopt the
regression-model based searching method to set the robust injec-
tion molding parameters [15], and utilize the PCA to generate a
composite quality indicator. The DOE and ANOVA methods are
then used to choose the major parameters as adjustment factors.
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Next, a two-level statistically designed experiment with the least
squared error method is used to generate a regression model be-
tween part quality and adjustment factors. Based on this mathe-
matical model, the steepest decent method is employed to search
for the optimal process parameters of the LGP molding.

2. The advanced robust parameters searching method for multi-
quality characteristics

Fig. 1 shows the advanced robust parameters searching method
proposed in this study comprised of four phases: (1) setting the
composite quality indicator, (2) executing 23 full factorial experi-
ments, (3) searching for robust process parameters, and (4) adjust-
ing the defective quality characteristics. The details of these four
phases are discussed as follows.

2.1. Phase 1: Setting the composite quality indicator

Initially, the PCA was used in this phase to convert observed
data which contain the information of multi-quality characteristics
into several independent quality indicators. Some of these indica-
tors were later selected to construct a composite quality indicator,
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Fig. 1. Flowchart of the innovative robustness parameter
which represents a mathematical model of multi-quality
characteristics.

The observed data used for PCA are initially normalized to gen-
erate dimensionless values, which fall in the range between 0 and
1. If the quality requirements were different, the corresponding
normalization could be different as well, as shown below:

Case 1: Larger-the-better. The target value of quality objectives was
uncertain and was expected to have a large value in the end
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In which, Lij and Y�ij represent the observed value and its normal-
ized value for the ith experimental run and jth quality characteris-
tics, respectively; max(Lj) and min(Lj) represent the maximum and
the minimum observed values of the jth quality characteristics,
respectively; Ob is the target value.

These normalized data were then used to construct a variance-
covariance matrix ‘A’, which is illustrated as below:

A ¼

R1;1 R1;2 . . . R1;n

R2;1 R2;2 . . . R2;n

..

. ..
. . .

. ..
.

Rm;1 Rm;2 � � � Rm;n

2
66664

3
77775

ð4Þ

Rk;l ¼
CovðY�i;k;Y

�
i;lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðY�i;kÞVarðY�i;lÞ
q ð5Þ

in which, ‘n’ stands for the number of quality characteristics and ‘m’
stands for the number of experimental runs. Then, eigenvectors and
eigenvalues of matrix A could be computed, which are symbolized
as Vj and kj, respectively.

In principal component analysis, the eigenvector Vj represents
the weighting vector of j number of quality characteristics of the
jth principal component. For example, if Qj represents the jth qual-
ity characteristics, the jth principal component ‘wj’ was treated as a
quality indicator with the required quality characteristics:

wj ¼ V1jQ 1 þ V2jQ 2 þ � � � þ VjjQ j ¼ V 0jQ ð6Þ

It should be noted that every principal component wj represents a
certain degree of explanation of the variation of quality characteris-
tics, namely the accountability proportion (AP). When several prin-
cipal components were accumulated, it increased the accountability
proportion of quality characteristics. Such arrangements were
called cumulative accountability proportion (CAP). In this study,
the composite principal component w was defined as the sum of
principal components with their individual eigenvalues greater
than one. These specific components, wj, were designated as indi-
vidual quality indicators. The composite principal component rep-
resents the generalized indicator of parts quality characteristics,
as shown below:

w ¼
XK

j¼1

wj ð7Þ

If a quality characteristic Qj strongly dominates in the jth principal
component, this principal component becomes the major indicator
of such a quality characteristic. It should be noted that one quality
indicator may often represent all the multi-quality characteristics.
In this work, the computation of PCA is executed by Minitab R14
software.

The selection of adjustment factors is based on the contribution
percentage of experimental factors to the composite quality indica-
tor,w, as analyzed by ANOVA method. The adjustment factors have
two distinct characteristics: (1) a change of adjustment factors
with the interference of environment will strongly affect the parts
quality. If the adjustment factors are controlled, the production of
qualified product will be assured. Through the varying of adjust-
ment factors, this research discovered a process window to allow
chosen factors to be altered within the window; the molded parts
were able to meet their quality specifications. (2) When some of
the parts that were molded with process parameters within the
process window failed to reach the level of quality, alteration could
be made on the range in order to meet the requirement.

In this phase, the composite quality indicator,w, may be gener-
ated by many quality indicators with different adjustment factors,
but only the first three most important adjustment factors were
selected in this work. They were used again in Phases 2, 3 and 4
to search for the optimal combination of process parameters. The
steps in Phase 1 can be summarized as follows:

Step 1: Normalize the measurements: After performing the sug-
gested Taguchi design experiment, normalize the observa-
tions of each quality characteristics by using the above
Eqs. (1), (2) or (3).

Step 2: Determine wj and w: By using PCA for the above normal-
ized observations, the quality indicator wj was determined
with the criterion of the principal component’s eigenvalue
greater than one. Then, the composite principal compo-
nent w was generated with the accumulated principal
components wj by using Eq. (7).

Step 3: Decide the three most significant adjustment factors: The
composite quality indicator w was a linear combination of
wj. Therefore, selection of the adjustment factors depends
on their level of contribution percentage to w through
ANOVA analysis, should affect wj, in which j = 1,2, . . . ,K
with respect to Eq. (7). Hence the adjustment factors could
be found to have most significant experimental factors for
wj individually. These adjustment factors were used as the
experimental factors of the 23 full factorial experiments in
Phase 2.

2.2. Phase 2: Executing 23 full factorial experiments

As mentioned before, the quality of injection parts could vary
with the interference of environmental noise. It was necessary to
seek out a robust process window in which the adjustment factors
were free to move around, if the quality characteristics could sat-
isfy the quality specification limits. By varying the adjustment fac-
tors caused by environmental interference and carrying out the 23

full factorial experiments, a roust process window can be identi-
fied. The experimental runs were designed with a combination of
the extreme points of three-dimension process window, as shown
in Fig. 2. The cube in the figure is the intended robust process win-
dow. If a defect occurs at extreme points in the process window, a
better region can be found by using the steepest decent method to
search for a new location of parameters settings.

The steps in Phase 2 are as follows:

Step 1 : Design the 23 full factorial experiments: The experiments
were designed according to the number and the possible
ranges of adjustment factors. The initial central point for
23 full factorial experiment was referred to the optimal
parameters setting of DOE suggested in Phase 1.
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Step 2 : Obtain the new wnew
j and wnew: By using PCA to the obser-

vations after normalization, the new quality indicators wnew
j

and composite principal components wnew are obtained.
Step 3 : Check robustness: If all the wnew for running 23full facto-

rial experiments meet the quality specification levels, this
means that the set-points of the process parameters of this
experimental group could be robust for the wnew. At this
point we go to Phase 4 for further confirmation. Otherwise,
the next step would be to repeat Phase 3 and search for
another set of process parameters by employing the regres-
sion-model based robust parameters searching method.

2.3. Phase 3: Searching for robust process parameters [15]

Through setting up a regression model, based on the relation-
ship between the process parameters and quality observations,
the method of steepest decent was employed to determine the dis-
tance and direction to the target. It was assumed that a quality
observation, y and k number of process parameters, have signifi-
cant affects on the quality, such as x1,x2, . . . ,xk. The sample datum
of full factorial experiment in the previous phase could be used
to fit the regression model. Therefore, the designed matrix of the
experiment could be used to obtain the data sample, which fits
the model. The matrix is shown by:

Y ¼ Xbþ e ð8Þ

Y ¼

y1

y2

..

.

yn

2
66664

3
77775

; X ¼

1 x11 x12 � � � x1k

1 x21 x22 � � � x2k

..

. ..
. ..

. . .
. ..

.

1 xn1 xn2 � � � xnk

2
66664

3
77775

; b ¼

b0

b1

..

.

bk

2
66664

3
77775

ð9Þ

in which Y stands for the vector of observation which may be wnew
j

or wnew here; X stands for the matrix of experimental runs; xnk

stands for the kth process parameter in the experimental run ‘n’.
b refers to the vector of estimated coefficients of the regression
model, and e stands for the random error vector.

The b vector can be estimated by the least squared error method
as follows:

b ¼ 1
2

X 0X
� ��1X 0Y ð10Þ

Then, we determine the composite equation of the relationship be-
tween the process parameters and the product quality, and then
convert Y, and the matrix X in Eq. (9) into Eq. (10), to get the coef-
ficient b in the regression model.

The steps in Phase 3 are as follows:

Step 1: Set up the regression model: Eq. (8) represents the rela-
tionship between process parameters and parts quality.
And the Y and X in Eq. (9) can be substituted into the fol-
lowing equations:
Y ¼

y1

y2

..

.

y8

2
66664

3
77775

; X ¼

1 �1 �1 �1 1 1 1 �1
1 1 �1 �1 �1 �1 1 1
1 �1 1 �1 �1 1 �1 1
1 1 1 �1 1 �1 �1 �1
1 �1 �1 1 1 �1 �1 1
1 1 �1 1 �1 1 �1 �1
1 �1 1 1 �1 �1 1 �1
1 1 1 1 1 1 1 1

2
66666666666664

3
77777777777775

ð11Þ

The X matrix was constituted with two values, 1 and �1,
which represent the upper and lower levels of each control
factor, respectively. The second, third, and fourth columns
represent the levels of x1, x2, and x3 control factors, respec-
tively. The fifth, sixth, and seventh columns represent the
levels of interaction effects of x1 to x2, x1 to x3, and x2 to
x3, respectively. The eighth column stands for the interac-
tion effect among x1, x2, and x3. Placing the vector Y and
matrix X into Eq. (10), one obtains the coefficient vector
of the regression model, b.
Step 2: Estimate the responses for all possible treatments in the
varying ranges: Use the set-point of the process parame-
ters (or the predicted points of the robust molding
parameters) and the least resolution of machine control
as the basis to arrange all the possible treatments in
the varying ranges. For example, if there are three adjust-
ment factors and the upper and lower limits are five
times the least resolution of the injection molding
machine, the varying ranges of each adjustment factor
could be divided into three groups and the number of
treatments would be 53.

Step 3: Determine whether the inference process should be con-
tinued or not: This step determines whether the inference
of the robust molding parameters should be stopped or
not. By substituting all treatments to construct coefficient
vectors of the regression model and to generate predicted
values, stopping the inference process has two conditions:
either all the predicted values meet the quality specifica-
tion, or some of predicted values do. In the latter case,
the set-point should be selected in the inference process,
and then go to Step 4. For the former one, go to Phase 2
to check the robustness.

Step 4: Infer the next robust molding parameter: Set the search
direction by means of the steepest decent method. The for-
ward distance relies on the least resolution of the machine
control. Go back to Step 2.

2.4. Phase 4: Adjusting the defective quality characteristic

When the composite quality indicator reaches the target value,
and in the case that some of the individual quality indicators are
out of the quality specification limits, they cannot always quickly
reflect each individual defective quality, which may cause mis-
judgment of each individual defective quality. In other words,
when the composite quality indicator fails to quickly reflect
defective quality, it is necessary to improve the defective quality
indicators. These indicators with the adjustment factors were put
into Phase 3 to build a new regression model and then applied
the regression-model based searching method to search for ro-
bust parameters. That is, modifying the adjustment factors make
the inadequate quality to meet the requirement.

Step 1: Check for inadequate quality indicators: Make sure the
individual quality characteristics all meet the quality spec-
ifications. If they do, the searching method is finished;
otherwise, go to the next step.

Step 2: Select the inadequate quality indicators wnew
j and combine

them to generate a composite quality indicator. Select the
corresponding adjustment factors. Then, go to Phase 3.

3. Computer simulation and evaluation

In this work, the commercial simulation software Moldex3D
was used to analyze the LGP molding conditions. This software is
based on a three-dimension solid element model, which helps to
promote precision, steadiness and efficiency in the simulation. It
is well known that the meshing numbers of the finite element in
the software may influence the convergence of simulation results.
To verify the convergence, cases with different meshing numbers,
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with ranges from 81,600 to 96,760 increasing by 2,500, were ini-
tially tested with the same molding condition. The simulation re-
sults showed that the three-quality characteristics, maximal
volumetric shrinkage rate, maximal warpage, and maximal shear
stress tend to be stable when the meshing number was over
89,500. Thus, the simulation analysis used meshing elements over
89,500 in this study. The computer device used for the simulation
was a Pentium 4 CPU, with 3 GHz speed, and 2 Gbyte RAM. It al-
lowed a simulation run to be completed within 100 minutes.
Fig. 3 shows a typical simulation of melt front, shear stress, total
displacement, and shrinkage.

This study used a 2-inch width, 1 mm thickness light guide
plate which had one cavity in each mold, as the molding object
in the experiment. The sectional area of the sprue was round,
increasing from 3 mm to 5 mm. The thickness of the designated
fan gate was 2.5 mm descending to 0.7 mm. The cooling channels
are shown as Fig. 4. The polymer materials were PMMA (KURARAY
GH-1000 S) and the injection molding machine was Fanuc a-30i,
which was made in Japan.

The designation of L18 (21 � 37) Taguchi orthogonal arrays used
for the simulation of LGP injection molding are shown in Table 1.
The chosen experimental factors were cooling time, plastic tem-
perature, mold temperature, filling speed, holding pressure, hold-
ing time, injection pressure, and screw stroke. The selected noise
factors were materials viscosity with two similar values. As to
the required quality characteristics, they contained the minimiza-
tion of maximal shear stress, maximal warpage, and maximal vol-
umetric shrinkage rate. The selection of experimental factor levels
was referenced to the material features provided by the material
supplier. The experiment was based on the adjustable region of
the injection molding machine. In this study, the verification fo-
Fig. 3. Simulation of light-guided plate’s melt front, shear stress, total d
cused on the performance of optimal process parameters obtained
by the innovative method described in this paper and Taguchi
method, respectively. With regard to the efficiency of the simula-
tion, the central and extreme values in the 3D process window
were selected to form 27 combinations. The quality characteristics
obtained from the Moldex3D simulation were further normalized
by using Eq. (2). Table 2 lists the normalized and averaged values
in columns 2, 3 and 4. They were used to form the variance-covari-
ance matrix and then to calculate eigenvalues by PCA. Table 3
isplacement and volumetric shrinkage rate by Moldex3D software.



Table 1
Design of L18(21 � 37) experiments and their simulation results

Exp.
No.

Control factors Observation

Cooling
time
(s)

Plastic
temp.
(�C)

Mold
temp.
(�C)

Filling
speed
(mm/s)

Holding
pressure
(MPa)

Holding
time (s)

Filling
pressure
(MPa)

Screw
stroke
(mm)

Shear
stressa

(MPa)

Shear
stressb

(MPa)

Warpageb

(lm)
Warpageb

(lm)
Shrinkageb

(%)
Shrinkageb

(%)

1 10 240 60 70 50 3 90 8.8 1.87 1.80 1.7 1.7 1.22 1.22
2 10 240 70 80 60 4 100 9.0 1.96 1.89 1.8 1.7 1.13 1.13
3 10 240 80 90 70 5 110 9.2 2.02 1.94 2.0 2.0 1.20 1.20
4 10 250 60 70 60 4 110 9.2 1.52 1.47 1.5 1.5 0.97 0.97
5 10 250 70 80 70 5 90 8.8 1.57 1.52 1.7 1.7 1.02 1.02
6 10 250 80 90 50 3 100 9.0 1.64 1.58 2.3 2.3 1.53 1.53
7 10 260 60 80 50 5 100 9.2 1.28 1.24 1.3 1.3 0.87 0.86
8 10 260 70 90 60 3 110 8.8 1.33 1.29 2.1 2.1 1.39 1.39
9 10 260 80 70 70 4 90 9.0 1.24 1.20 2.1 2.1 1.33 1.33

10 20 240 60 90 70 4 100 8.8 2.00 1.93 1.4 1.4 0.95 0.95
11 20 240 70 70 50 5 110 9.0 1.87 1.81 1.7 1.7 1.02 1.02
12 20 240 80 80 60 3 90 9.2 1.96 1.87 2.3 2.3 1.51 1.51
13 20 250 60 80 70 3 110 9.0 1.58 1.52 3.1 3.0 1.20 1.20
14 20 250 70 90 50 4 90 9.2 1.63 1.58 1.8 1.8 1.15 1.15
15 20 250 80 70 60 5 100 8.8 1.52 1.47 2.1 2.1 1.21 1.21
16 20 260 60 90 60 5 90 9.0 1.33 1.29 1.3 1.3 0.85 0.85
17 20 260 70 70 70 3 100 9.2 1.24 1.20 2.1 2.1 1.39 1.39
18 20 260 80 80 50 4 110 8.8 1.29 1.25 2.1 2.1 1.33 1.33

a,b Generated with the variation of materials viscosity.

Table 2
Principal component analysis for L18 experimental observations

Exp.
No.

Averaged
normalized shear
stress

Averaged
normalized
warpage

Averaged
normalized
shrinkage

w1 w2 w

1 0.23 0.76 0.46 0.85 0.28 1.13
2 0.12 0.77 0.59 0.96 0.18 1.14
3 0.05 0.60 0.48 0.76 0.10 0.85
4 0.64 0.94 0.83 1.21 0.72 1.92
5 0.58 0.80 0.75 1.06 0.64 1.70
6 0.50 0.43 0.00 0.27 0.52 0.79
7 0.92 1.00 0.97 1.34 1.01 2.34
8 0.87 0.57 0.21 0.49 0.90 1.40
9 0.97 0.57 0.29 0.55 1.01 1.56

10 0.07 0.94 0.85 1.26 0.15 1.41
11 0.22 0.79 0.75 1.08 0.29 1.36
12 0.13 0.45 0.04 0.34 0.16 0.49
13 0.57 0.01 0.49 0.31 0.59 0.91
14 0.51 0.75 0.56 0.89 0.56 1.46
15 0.64 0.58 0.47 0.71 0.68 1.39
16 0.87 1.00 1.00 1.36 0.95 2.31
17 0.97 0.56 0.21 0.49 1.01 1.49
18 0.91 0.55 0.30 0.54 0.95 1.49

w1, the first principal component.
w2, the second principal component.
w, the composite quality indicator, namely cumulative principal component gen-
erated by the sum of w1 and w2.

Table 3
Eigenvalues, eigenvectors, accountability proportion (AP), and cumulative account-
ability proportion (CAP) computed for the first three major quality indicators

w1 w2 w3

Eigenvalue 1.73 1.00 0.27
Eigenvector [�0.061 0.706 0.706]T [0.998 0.047 0.040]T [0.005 �0.707 0.707]T

AP 0.58 0.33 0.09
CAP 0.58 0.91 1.00

Table 4
ANOVA analysis for the composite quality indicator w

SV DOF SS MS F PSS CP (%)

Cooling time 1 0.02
Plastic temp. 2 1.48 0.74 30.76 1.44 35.80
Mold temp. 2 1.00 0.50 20.70 0.95 23.70
Filling speed 2 0.06
Holding pressure 2 0.05
Holding time 2 1.26 0.63 26.16 1.21 30.27
Injection pressure 2 0.05
Screw stroke 2 0.02
Error 2 0.06
Pooled error (11) (0.10) (0.02) 0.41 10.23

Total 17 4.01 100.00

SV, source of variation; DOF, degrees of freedom; SS, sum of squares; MS, mean
square; PSS, pure of sum squares; CP, contribution percentage; F1,11,0.01 = 9.65,
F2,11,0.01 = 7.2.
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presents the obtained eigenvalues, accountability proportions (AP),
and eigenvectors.

Table 3 shows that the eigenvalue of the first principal compo-
nent w1 was 1.73 and AP was 0.58; the eigenvalue of the second
principal component w2 was 1.00 and AP was 0.33. The composite
quality indicator w was the sum of individual quality indicators, in
which their cumulative accountability proportion is normally set
as greater than 0.8. In this case, the composite quality indicatorw
is the sum of w1 and w2, since the CAP of w1 and w2 was 0.91. In
Table 3, the maximal shear stress, maximal warpage, and maximal
volumetric shrinkage rate, with the corresponding weighting vec-
tor of the first principal component, was the eigenvector [�0.061
0.706 0.706]T. This vector was substituted into Eq. (6) to calculate
the first principal component w1, and so was w2. The quality obser-
vation obtained from Taguchi method was converted into w1, w2

and w using PCA, as shown in columns 5, 6 and 7 in Table 2. The
warpage and the shrinkage weigh significantly in the first principal
component, so the first principal component could be seen as the
quality indicator of warpage and shrinkage. In this sense, the sec-
ond principal component figure is that of shear stress.

Table 4 display the results of the ANOVA analysis carried out to
examine the w value obtained by the L18 Taguchi method. The re-
sults show that plastic temperature, mold temperature, and hold-
ing time significantly affect the value of the composite principal
component, so these three factors were selected as its adjustment
factors. Table 5 shows that mold temperature and holding time
have significant influence on w1. Comparing Tables 4 and 5, mold
temperature and holding time both had significant influence on



Table 5
The ANOVA analysis for the first principal component w1

SV DOF SS MS F PSS CP (%)

Cooling time 1 0.01
Plastic temp. 2 0.05
Mold temp. 2 0.84 0.42 22.04 0.80 36.00
Filling speed 2 0.02
Holding pressure 2 0.04
Holding time 2 1.13 0.57 29.89 1.10 49.45
Injection pressure 2 0.05
Screw stroke 2 0.02
Error 2 0.05
Pooled error (13) (0.25) (0.02) 0.32 14.55

Total 17 2.22 100.00

SV, source of variation; DOF, degrees of freedom; SS, sum of squares; MS, mean
square; PSS, pure of sum squares; CP, contribution percentage; F1,13,0.01 = 17.82,
F2,13,0.01 = 6.7.

Table 7
Full-factorial experimental results and the principal component analysis for the first
inference of robust parameters

Exp.
No.

Initial central point Averaged
normalized
shear
stress

Averaged
normalized
warpage

Averaged
normalized
shrinkage

w w2

Plastic
temp.
(263 �C)

Mold
temp.
(57 �C)

Holding
time
(5.3 s)

0.537 0.525 0.599 1.338 0.581

1 +5 +5 +0.5 0.166 0.826 0.634 1.267 0.250
2 �5 +5 +0.5 0.885 0.784 0.546 1.837 0.960
3 +5 �5 +0.5 0.149 0.012 0.218 0.296 0.144
4 �5 �5 +0.5 0.866 0.000 0.066 0.845 0.857
5 +5 +5 �0.5 0.166 0.907 0.905 1.519 0.252
6 �5 +5 �0.5 0.885 0.944 0.877 2.195 0.970
7 +5 �5 �0.5 0.149 0.040 0.444 0.472 0.141
8 �5 �5 �0.5 0.866 0.061 0.42586 1.140 0.855

Normalized lower
specification limit

=0.265 =�0.176 =�0.044 =0.069 =0.242

Note: The eigenvector of the first principal component w1 for shear stress, warpage
and shrinkage is [�0.068 0.703 0.708], respectively. The eigenvector of the second
principal component w2 for shear stress, warpage and shrinkage is [0.992 0.124
�0.028], respectively.
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w1 and w, so plastic temperature should be the adjustment factor
for the second principal component value.

Using these three adjustment factors in the full factorial exper-
iment of multi-quality characteristics, the central point of the pro-
cess window was the set-point of the current process parameters.
According to Taguchi method, the optimal design of process
parameters are plastic temperature at 260 �C, mold temperature
at 60 �C, and holding time at 5 s. In the experiment, the ranges
for the process window for mold temperature and plastic temper-
ature were set at ±5 �C, and the holding time was set at ±0.5 s,
which were five times of the resolution of the injection molding
machine. The preferred quality characteristics were smaller-the-
better, and the quality specifications were as follows: maximal
shear stress less than 1.25 MPa, maximal warpage less than
1.5 lm, and maximal volumetric shrinkage rate less than 1%.

Table 6 demonstrates that results of using PCA to analyze the
average value of the normalized quality characteristics andw. It
was observed that the w values in Runs 3 and 7 were less than
the normalized lower specification limit 0.442 in the composite
quality indicator. If the process parameters did not reach the de-
sired levels of robustness, the experiment had to repeat Phase 3
to build a regression model used for searching for the set-point
of robust process parameters. The set-point was found in the com-
bination of plastic temperature at 263 �C, mold temperature at
57 �C, and holding time at 5.3 s. This combination was tested by
Table 6
Full-factorial experimental results and the principal component analysis for Taguchi
method

Exp.
No.

Initial central point Averaged
normalized
shear stress

Averaged
normalized
warpage

Averaged
normalized
shrinkage

w

Plastic
temp.
(260 �C)

Mold
temp.
(60 �C)

Holding
time
(5 s)

0.537 0.502 0.501 0.575

1 +5 +5 +0.5 0.088 0.846 0.678 1.336
2 �5 +5 +0.5 0.948 0.806 0.524 1.871
3 +5 �5 +0.5 0.103 0.017 0.082 0.159
4 �5 �5 +0.5 0.921 0.000 0.002 0.735
5 +5 +5 �0.5 0.088 0.987 0.972 1.681
6 �5 +5 �0.5 0.948 0.867 0.751 2.095
7 +5 �5 �0.5 0.103 0.065 0.395 0.434
8 �5 �5 �0.5 0.921 0.084 0.355 1.073

Normalized lower specification
limit

=0.395 =0.117 =0.029 =0.442

Note: The eigenvector of the first principal component w1 for shear stress, warpage
and shrinkage is [�0.179 0.688 0.703], respectively. The eigenvector of the second
principal component w2 for shear stress, warpage and shrinkage is [0.976 0.212
0.040], respectively.
the full factorial experiment and was analyzed by PCA. The average
value of normalized quality characteristics was converted into w
and w2, as shown in Table 7.

In Table 7, all w values in the full factorial experiment were
greater than the normalized lower specification limit 0.069. How-
ever, the average values of normalized shear stress in Run 1, Run 3,
Run 5, and Run 7 were not greater than its normalized lower spec-
ification limit. Although the results satisfy the criterion of robust-
ness in this phase, the individual quality observation did not
meet the quality specification. Hence, the individual defective
quality should be rectified in Phase 4.

According to PCA and ANOVA methods, the quality indicator of
shear stress was w2, and its adjustment factor was plastic temper-
ature. After going through Phase 2 and Phase 3 to rectify the qual-
ity observations of the individual shear stress, the set-point of the
robust process parameters was redefined as: plastic temperature at
266 �C, mold temperature and holding time the same. This set-
point was again tested by the full factorial experiment and ana-
lyzed by PCA. The results shown in Table 8 indicate that the indi-
Table 8
Full-factorial experimental results and the principal component analysis for the
second inference of robust parameters

Exp.
No.

Initial central point Averaged
normalized
shear stress

Averaged
normalized
warpage

Averaged
normalized
shrinkage

w2

Plastic
temp.
(266 �C)

Mold
temp.
(57 �C)

Holding
time
(5.3 s)

0.534 0.527 0.549 0.564

1 +5 +5 +0.5 0.154 0.819 0.562 0.204
2 �5 +5 +0.5 0.880 0.777 0.482 0.927
3 +5 �5 +0.5 0.144 0.015 0.104 0.143
4 �5 �5 +0.5 0.877 0.001 0.063 0.875
5 +5 +5 �0.5 0.154 0.920 0.887 0.208
6 �5 +5 �0.5 0.880 0.958 0.883 0.935
7 +5 �5 �0.5 0.144 0.051 0.367 0.143
8 �5 �5 �0.5 0.877 0.071 0.331 0.877
Normalized lower specification

limit
=0.010 =�0.171 =0.029 =�0.002

Note: The eigenvector of the first principal component w1 for shear stress, warpage
and shrinkage is [�0.042 0.706 0.706], respectively. The eigenvector of the second
principal component w2 for shear stress, warpage and shrinkage is [0.998 0.069
�0.01], respectively.
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vidual quality characteristic and w2 were within the quality spec-
ification limits under the premise of w.

According to the results of searching for the optimal process
parameters by Taguchi method, there were two sets that failed
to meet the target when tested in the full factorial experiment.
However, the optimal process parameters obtained from the pro-
posed method in this study generated qualified products. This indi-
cates that the innovative method proposed in this research is
feasible for seeking optimal robust process parameters.

Verification of the results was carried out by comparing the
performance of the optimal process parameters found by the pro-
posed method and Taguchi method through computer simulation.
In this simulation, the varying ranges of the adjustment factors
were: plastic temperature and mold temperature at ±5 �C, and
holding time varying at ±0.5 s. The robust process parameters
found by Taguchi method were: plastic temperature at 260 �C,
mold temperature at 60 �C, and holding time at 5 s. For those of
the proposed method, the parameters setting were: plastic tem-
perature at 266 �C, mold temperature at 57 �C, and holding time
at 5.3 s. The experimental runs and simulation results are shown
in Table 9.

Table 9 shows that the parts quality using Taguchi method for
optimal parameters setting, contains 9 sets in the category of max-
imal shear stress over the target value, 1.25 MPa, 9 sets in maximal
warpage over the target value, 1.5 lm; 1 set in maximal shrinkage
was over the target value by 1%. However, all products produced by
the innovative method were qualified. The normal distribution of
utilizing three-quality characteristics in terms of probability den-
sity function is shown in Fig. 5. The dashed line and solid line stand
for the optimal process parameters obtained by Taguchi method
and the proposed method, respectively. These two lines show that
the average value and standard deviation of parts quality were
greatly improved by the innovative method. The number of exper-
imental runs in this case study required 26 runs for the innovative
Table 9
Qualities of robustness for Taguchi method and the proposed method

Exp.
no.

Taguchi method

Plastic
temp.
(�C)

Mold
temp.
(�C)

Holding
pressure (MPa)

Shear stress
(MPa)

Warpage
(lm)

Shrinkage
(%)

1 255 55 4.5 1.36 1.20 0.84
2 255 55 5.0 1.36 1.16 0.81
3 255 55 5.5 1.36 1.16 0.76
4 255 60 4.5 1.36 1.37 0.91
5 255 60 5.0 1.36 1.34 0.86
6 255 60 5.5 1.36 1.32 0.82
7 255 65 4.5 1.36 1.54 0.99
8 255 65 5.0 1.36 1.52 0.95
9 255 65 5.5 1.36 1.56 0.90

10 260 55 4.5 1.23 1.21 0.86
11 260 55 5.0 1.23 1.17 0.82
12 260 55 5.5 1.23 1.16 0.77
13 260 60 4.5 1.23 1.37 0.92
14 260 60 5.0 1.23 1.34 0.87
15 260 60 5.5 1.23 1.32 0.83
16 260 65 4.5 1.23 1.54 1.00
17 260 65 5.0 1.23 1.57 0.95
18 260 65 5.5 1.23 1.52 0.91
19 265 55 4.5 1.10 1.21 0.88
20 265 55 5.0 1.10 1.18 0.83
21 265 55 5.5 1.10 1.16 0.77
22 265 60 4.5 1.11 1.38 0.93
23 265 60 5.0 1.11 1.34 0.89
24 265 60 5.5 1.11 1.32 0.83
25 265 65 4.5 1.11 1.55 1.01
26 265 65 5.0 1.11 1.52 0.96
27 265 65 5.5 1.11 1.51 0.91

Italicized numbers mean unqualified parts.
method (including 3 set of full factorial experiments and 2 sets of
predicting central point experiments), which was more than that of
Taguchi method (19 runs). However, its performance in searching
for the optimal process parameters generates 100% qualified prod-
ucts and was superior to that of Taguchi method, in which the
yielding rate was only 44% with respect to the influence of environ-
mental noise.

4. Experimental setup and results

To experimental evaluate the proposed robust parameters
searching method of multi-quality characteristics, this study uses
the injection of light guided plates (LGPs) as the tool and chooses
the quality control of the replication ability in the micro-structure
as the aims of the experiments. The dimensions of the injection
product as shown in Fig. 6 are 40 mm length � 30 mm width � 1
mm depth of light guided plates. The micro-structure is a circu-
lar-shaped, electroformed stamper with 671 lm in diameter and
22.6 lm in height. The stamper for LGPs is clipped to the core of
the mold and filled by a fan gate. The opening of the gate is
8 mm wide and 0.7 mm long. The mold has a single cavity and
two cooling channels. The molding materials are made by PMMA
Japan, and the molding machine is FANUC ROBOSHOT a-30iA.
The molded micro-structure of LGP is measured by a 3D profiler
and the measured points are shown in Fig. 7. The selected quality
characteristics are maximizing the 9-point averaged height of the
micro-structure and minimizing the deviation of 9-point measured
heights. The specification for 9-point averaged heights of micro-
structures is set above 80% (18.08 lm), which is acceptable in
the industry.

The experiments in this paper are developed by Taguchi orthog-
onal arrays L18 to evaluate the robust process parameters on the
replication ability of LGP. In terms of the quality of replication abil-
ity, the selected process parameters are: injection temperature,
Proposed method

Plastic
temp.
(�C)

Mold
temp.
(�C)

Holding
pressure (MPa)

Shear stress
(MPa)

Warpage
(lm)

Shrinkage
(%)

261 52 4.8 1.20 1.11 0.84
261 52 5.3 1.20 1.10 0.77
261 52 5.8 1.20 1.08 0.72
261 57 4.8 1.20 1.25 0.85
261 57 5.3 1.20 1.22 0.80
261 57 5.8 1.20 1.21 0.78
261 62 4.8 1.20 1.43 0.83
261 62 5.3 1.20 1.40 0.87
261 62 5.8 1.08 1.42 0.85
266 52 4.8 1.08 1.13 0.85
266 52 5.3 1.08 1.10 0.77
266 52 5.8 1.08 1.08 0.73
266 57 4.8 1.08 1.26 0.88
266 57 5.3 1.08 1.22 0.81
266 57 5.8 1.08 1.21 0.78
266 62 4.8 1.08 1.43 0.94
266 62 5.3 1.08 1.40 0.88
266 62 5.8 1.08 1.41 0.85
271 52 4.8 0.98 1.15 0.86
271 52 5.3 0.98 1.10 0.77
271 52 5.8 0.98 1.07 0.72
271 57 4.8 0.98 1.27 0.89
271 57 5.3 0.98 1.22 0.82
271 57 5.8 0.98 1.21 0.78
271 62 4.8 0.98 1.43 0.95
271 62 5.3 0.98 1.40 0.89
271 62 5.8 0.98 1.41 0.86
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Fig. 5. Qualities of minimizing (a) shear stress, (b) warpage, and (c) volumetric shrinkage rate obtained by the proposed method and Taguchi method, respectively.
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backing pressure and mold temperature. From the analysis of L18

experiment, the best combination is selected as the initial setting
point consisting of 260 �C injection temperature, 80 kg/cm2 pack-
ing pressure, and 70 �C mold temperature. To prove the setting
point searched by the innovative method is indeed more robust
than the initial setting point, these two setting points are used to
inject 100 molds as the samples for measurement. Their results
demonstrate whether the innovative method is superior to Taguchi
method.

Twenty-one out of the 100 molds injected by the initial setting
point are measured and their height of replicating the micro-struc-
ture is around 80%. Statistically, the experimental results are
20.25 lm high on average, with 89.6% of the microstructure
22.6 lm and a standard deviation of 2.646 lm. All 100 molds in-
jected by the robust setting point are qualified to have height
20.53 lm on average, 95.3% of the microstructure 22.6 lm and
standard deviation of 2.326 lm.

It can be seen that the Taguchi method can be improved by this
innovative searching method: 21 deficient molds out of 100 sam-
ples are produced by Taguchi method, but zero deficient molds
by the improved method. The reject rate is thus much reduced.
In summary, the experimental results have shown that the pro-
posed searching method is not only practical, but also performs
better than the Taguchi method.
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5. Conclusions

This work proposes an advanced searching method which effec-
tively deals with the set-point of robust parameters in the injection
molding process, to meet the requirements of multi-quality char-
acteristics in molded parts. Computer simulations and experiment
of the light-guided plate are performed to examine this method,
and its performance is also compared with Taguchi method. The
innovative searching method is based on: (1) principal component
analysis to construct a composite quality indicator, which repre-
sents the mathematical model of multi-quality characteristics. (2)
A regression model-based searching method can reflect variables
to adjust the searching distance and direction. Our proposed meth-
od has advantages of fivefold:

(1) The operator does not used complex designs of experiments
or related knowledge.

(2) The regression model for the description of mathematical
relationship between part quality and process parameters
is simple, and the inference of robust process parameters
is efficient.

(3) The ratio of disqualified products due to unstable machines
and non-uniform materials is decreased, and the effective-
ness of the molding process can be improved.
(4) The treatment constructed in the full-factorial experiments
can be checked in order to make sure whether the molding
process is robust or not. Finally,

(5) The search for robust parameters is not restricted to the
designed levels of controlled factors.

Also, the computer simulation and experiment of LGP molding
conducted in this study shows that the performance of the pro-
posed approach in searching for the optimal process parameters
generates 100% qualified products and was superior to that of
Taguchi method, with respect to the influence of environmental.
In summary, the proposed innovative method has potential to
effectively solve the problem of multi-quality characteristics and
thus significantly improves the stability of molding process and
raises its yield rate.
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